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In this work we investigate the performance of different deep learning methods in the task of
self driving, aided by regularising methods and synthetic data augmentation. We obtain results
for models/methods including vanilla Multi layer preceptors, vanilla Convolutional neural networks
as well as results using Transfer Learning with MobileNetV3Small and EfficentNetV2 B0 and B1,
with performances ranking in the respective order from worse to best. We obtain a best performing
theoretical model using the EfficentNetV2B0 model, obtaining a Kaggle MSE score of 0.01161. Fur-
thermore on the practical testing, we used the MobvileNetV3Small and obtained a poorly performing
model, only scoring 9

35
points in the live testing.

INTRODUCTION

Since the development of the first convolutional neu-
ral network (CNN) known as Alex net [1], many previ-
ously unattainable applications of machine became pos-
sible, this is because CNNs opened the way for machine
learning systems to interact effectively with image data.
One of the most promising applications of CNNs is the
self driving car, simply, given that a human driver pri-
marily relies on their vision system to drive, it should in
theory be possible to develop a machine learning system
that utilises a vision based model architecture to tackle
the problem. Indeed the current state of the art systems
for self driving cars all utilise CNNs as their primary im-
age processing technology [2], and the most advanced self
driving system appears to be the Tesla autopilot system
[3], which is continuously being updated an improved to
drive with greater generality and safety.

In this work we/(I) will be investigating the effective-
ness of vanilla neural networks as well as CNNs in the task
of self driving. Using the Sunfounder Picar [4], a set of
14.8k images is provided through a Kaggle competition,
split such that 13.8k images are for training (image + la-
bel) and 1.02k images are for testing (image only). The
images are of dimension (240,320,3) in PNG format, the
labels for each image in the training set states the speed
and steering angle of the car at that particular time and
this is provided within a CSV file.

Furthermore after training and testing the model on
unseen data, we additionally test the model on a live
testing environment, where the model is loaded onto the
Sunfounder Picar and is evaluated on a set of challenges.
There is a total of 12 challenges which could be categorised
into three types: Lane centering and stable driving, where
the car is expected to drive at the center of the lane with-
out swerving too much; Critical risk assessment, this is
simply to stop or go depending on what object the car
is seeing, objects include: green light sign, red light sign,
pedestrian, a tree and a box; And navigation, where the
car is expected to respond to right and left turning signs
(arrows) such that the car changes directions at the ap-

propriate time.
We will begin by first carrying out exploratory data

analysis of the provided data set, this is followed by data
cleaning and prepossessing, this is done in order to be
able to use the data as input for the machine learning
models. Additionally, data augmentation is implemented,
this has been shown to regularise machine learning models
and classification accuracy [5]. We will then investigate
different architecture and observe their effectiveness on
the task without utilising data augmentation, this is done
in order to pick out the most effective architecture before
retraining it completely to produce the best prediction
results possible, this is done due to time restrictions.
The methods/models used are; vanilla neural networks,

vanilla convolutional neural networks and transfer learn-
ing with pretrained TensorFlow models [6], namely Mo-
bilenetsV3 models [7] and EfficentNetV2 models [8] are
used.

METHODOLOGY

To begin this work, the data is downloaded for cleaning,
it is observed that a small number of images appear be
missing while the labels for said images were present, to
solve this issue the labels were removed. Furthermore
some images appeared to have been in RGBA (4 channels)
format where an extra alpha channel was present, this was
corrected by simply removing the extra channel, reducing
the total number of channels for those images form 4 to
3 channels. Finally, we observe that some speeds had
anomalous values and since this was only a small number
of images (N = 1) from the dataset, the issue was resolved
by simply giving those image appropriate labels manually.
The CSV file provided is a list of 13.8k rows, each with

columns; ImageId, Car Steering angle and Car speed.

anglenorm =
angle− 50

130− 50
(1)

speednorm =
speed− 0

35− 0
(2)
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Equations (1, 2), show how the labels for angle and speed
are transformed respectively, this is later used to revert
the predicted values back to the correct scales used by
the Picar. Additionally, Fig. 1 shows a histograms of the
angles and speed after the data is cleaned.
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FIG. 1: Showing (a) the steering angle and (b) the speed
distributions of the dataset. where for (a), a value of
0 indicates a left turn, 0.5 to be driving straight and 1 a
right turn. Furthermore, a speed of 0 suggest a stationary
car and speed of 1 suggesting a moving car.

We can observe that the angle distribution is approx-
imately normally distributed with slight skew towards
right steering angles, this suggests that for the majority of
the time the car is driving forwards and slightly towards
the right, while rarely turning in the extremes. Addition-
ally, the speed is skewed towards values of 1, suggesting
that the data shows the car driving forwards for the ma-
jority of the time. Those imbalances in data representa-
tions will need to be accounted for and balanced in order
to obtain a representative model that will be able to gen-
eralise well both for the Kaggle competition and the live
testing, this is done by collecting more data from the car
while turning and by using data augmentation methods.

Furthermore, before any preprocessing step is taken,
the data is simply split into a representative training and
testing sets this is done so that we can obtain a reliable
generalisation error after training the models on data that
has never been seen by the model before. On the other
hand, in order for the machine learning model to be able to
take in the training data, the data has to be in a format
most suitable for the model being used at that specific
time. For models such as the MLP, the input has to be
a one dimensional vector, therefore the image is flattened

before being given as an input to the model, and since
the rest of the models being tested are CNNs, the image
is simply given as is or resized to (224, 224, 3) to be used
with MobileNetV3 and EfficentNetV2.
The image pixels are given as discrete values ∈ [0, 255],

however, in order for most models to converge quicker an
image normalisation step is used where the discrete pixel
values are rescaled such that

pixelscaled =
pixeloriginal

255
. (3)

Additionally, soft labelling was applied on the speed label
only, this is a regularising technique that introduces noise
into the given label’s distribution, this has been shown to
allow the model to learn more effectively [9]. Label soft-
ening was applied such that for each speed label of value
0, a sample from a uniform distribution X ∼ U(0.15, 0.35)
is obtained and used as the label, similarly, for a speed
labels of values 1, a sample from a uniform distribution
X ∼ U(0.15, 0.35) is used in a similar way.
Furthermore, visual distortion data augmentation (pri-

mary augmentation) was used in order to regularise the
model [10], this includes the following transformation:
random contrast, image rotation and zoom-resize (see Fig.
2), the augmentation library Albuminations was used to
complete this task [11].

MotionBlur Random Brighness

Rotate Random Resized Crop

Primary data augmentation

FIG. 2: Showing examples of data augmentation, where
the same image undergoes different predefined transfor-
mations.

Additionally, we introduce problem specific data aug-
mentation (secondary augmentation), this augmentation
aims to expand the dataset, such that the model is able
to learn general rules that would help it make more accu-
rate predictions for the challenges previously detailed, and
this includes: adding cropped images of pedestrians and
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objects to each training example, followed by a change
to the speed label such that it has a value of zero, effec-
tively teaching the model to stop whenever an object is
placed in front of it; we also add cropped images of right
and left turn signal, followed by random label changes
X ∼ U(0.15, 0.35) for a left turn and X ∼ U(0.65, 0.85)
for a right turn; also red and green stop light signs were
cropped and added into the image and the speed label
was either changed to zero or left unchanged respectively
for each scenario. Fig. 4 shows examples of augmenta-
tions on a reference image, the augmented images in Fig.
4 are again augmented using the primary augmentation,
to regularise the model even further.

Steer Steer

Stop Light Stop Light

Stop Object Stop Object

FIG. 4: Showing an example of secondary augmentation
carried out on the reference image, with the first row
showing a steering sign, second row showing a stop light,
and the third row showing an object placed in front of the
car’s view.

one potential issue with this technique is the fact that
some images may already contain the object used in the
augmented image, this may lead the model to be confused
and to generalise poorly, therefore, to work around this,
the augmentation was done for specific label value ranges
for the angle label only: for example the turning signs are
added only if the initial steering angle is relatively straight
angle ∈ [0.4 : 0.6], on the other hand this doesn’t apply
to the speed label as the nature of the problem allows
for this. However, for stop signs (red and green light),
the augmentation was done for images where the speed
is 1 for both cases, this is done to avoid scenarios where
the red light for stopping is potentially already present in
images with speed label = 0.

Finally, in this work, a few models are trained and
tested on the non-augmented data in order to figure out
which model is the best performing model. A simple feed

forward neural network (see Appendix for shape), was the
first model that was trained and tested, this is used to al-
low for a comparison with image based techniques (e.g
CNNs). The MLP uses ReLU for activation layers, Adam
as its optimiser, a learning rate of 0.001, for 15 epochs,
with average pooling and a dropout rate of 0.2 after each
layer.
After testing a simple MLP, two vanilla convolutional

neural networks; deep and shallow CNNs (see Appendix
for shapes), were trained and tested. We expected that
those models will perform a lot better than MLPs due
to the convolutional operation that draws relation from
neighbouring pixels. Furthermore, both CNNs use ReLU
for activation layers, Adam as an optimiser, a learning
rate of 0.001, for 10 epochs, with average pooling and
batch normalisation layers.
Finally, Transfer learning, which is a method based on

the principle that problems in a common domain share
similarities, and that knowledge can be transferred from
one similar application to another is used. Keras provides
models that were trained on the Imagenet dataset [12].
Transfer learning allows us to make use of those models,
we are simply removing the top layers and utilising the
trained layers/parameters to solve an image based (regres-
sion) problem; we take the pretrained transfer learning
model and remove the inference layer, this is replaced with
a two neuron dense layer with ReLU activation, where
each neuron represents a label (angle and speed).
we then train the 2 neuron dense layer while the rest of

the model layers are frozen and after, we being to fine tune
the model by unfreezing ≈ 2% of the layers and training
the model again but with a much lower learning rate. We
initially start by using MobileNetV3 as our first pretrained
model [7]. Additionally we train different EfficentNetV2
models, namely B0, and B1 each of which are provided
through the Keras API, All transfer learning models use
ReLU for activation on the inference layers, Adam as an
optimiser, a learning rate of 0.001, for 10-20 epochs, with
average pooling and no regularisation layers (batch nor-
malisation or dropout).
Furthermore after training all of the aforementioned

models, a single model namely, B0, was picked for fur-
ther training, the model was trained using similar hyper-
parameters, however it was trained for a longer period of
time multiple times, with different types of augmentation:
initially with no augmentation, followed by primary aug-
mentation, secondary augmentation and back again for a
final training period with the primary augmentation, this
was done at different layers such that the deepest layers
saw the most augmented data and shallower layers saw
the raw dataset at the end. After fine tuning, the model
was further tuned using selected secondary augmentation
scenarios for 1-2 epochs, before removing soft labelling
and again training the head layer for 1 epoch.
[Note: See appendix for learning curves]
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RESULTS AND DISCUSSION

Table I shows the model size in terms of the number
of trainable parameters, the inference time on the car for
models that were chosen as candidates for live testing,
and the initial Kaggle score measured is MSE. We found
that the MLP is the worst performing model and this is
as expected, because MLPs aren’t capable of easily draw-
ing relationships between neighboring pixels due the input
structure (vector). Furthermore, the two vanilla CNNs
perform better than the MLP with the shallow CNN per-
forming slightly better than the deep CNN, this is due
to the vanilla architecture, where a large kernel was used
(10×10), and no up sampling along with max pooling, all
of which contributed to a smaller number of parameters,
however a lot of information from the image is destroyed
due to this, in the meanwhile a smaller kernel size (5× 5)
and fewer layers were used for the shallow CNN, this al-
lows the model to draw some correlation while not losing
much information, and results in the model performing
slightly better than the deep CNN.

Furthermore we find that the MobileNetV3 CNN archi-
tecture performs better at the task than a shallow CNN
after fine tuning a small number of layers (≈ 2%) for a
short period of time. Similarly, we find that EfficentNetV2
models are general more accurate with B0 being the best
model, and therefore was chosen as the primary model for
training. After training and tuning the B0 model multiple
times as described previously in the methodology, a final
Kaggle score of 0.01161 was obtained.

For the live testing the model we chose was the Mo-
bileNetV3Small, despite the EfficentNetV2B0 model per-
forming much better on the Kaggle competition, we ran
into the problem of a slow inference time, where the B0
model took ≈ 1.25s to make a single prediction on the
car, this is too long and results in the car driving off of the
track before a new prediction is made. MobileNetV3Small
is ≈ 5× smaller than Efficient net B0, and it’s initial Kag-
gle score performance is much worse than B0, however it’s
inference time is ≈ 11× quicker (Table I), this allows the
model some leeway with inference accuracy, as it could
make multiple error and still recover an accurate course
on the track through a few correct predictions, this is a
trade off between model complexity and accuracy. On
the live testing however, the MobileNet model performed
poorly scoring only 9

35 points, this is because the Mo-
bileNet model was poorly trained due to time restrictions.
This was also due to a failure to strike a balance between
model complexity and real world performance when differ-
ent models were initially chosen, the B0 model was a very
good theoretical model, however practically speaking, due
to the poor inference time, it is a very poor model, on the
other hand, MobileNetV3small is a very simple model,
making it a slightly worse theoretical model but practi-
cally it is a lot better.

TABLE I: Model Information and results

Model N.Params (N) Inference Time (s) First Kaggle score (MSE)

MLP ≈ 500e03 - 0.1304

CNN deep ≈ 300e03 - 0.0834

CNN Shallow ≈ 740e03 - 0.0630

MobileNetV3Small ≈ 1e06 ≈ 0.11 0.0541

EfficentNetV2B0 ≈ 5e+ 06 ≈ 1.25 0.04

CONCLUSION

In this work we successfully trained and tested multi-
ple machine learning models to tackle a real world prob-
lem, effective techniques were used to create a very accu-
rate theoretical model, however when tested in the real
world, there was a failure due to complexity, and again,
a very practical but theoretically poor model was used,
that again sinned at striking a good balance between the-
ory and real world application.
To advance this work a few things could be done,

firstly and most importantly, is to find a model slightly
more complicated than the MobileNetV3Small and sim-
pler than EfficentNetV2B0, such a model should be per-
form well theoretically and then practically when deployed
on the car, secondly, we could add a scaling property to
the secondary augmentation, such that the model can see
the same object at different sizes, this can then be further
advance by logic to teach the model to only respond to
objects that are close by e.g ”To only stop when the red
light sign is large”.
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APPENDIX

FIG. 5: Showing the raw shape of the MLP model

FIG. 6: Showing the raw shape of the Deep CNN model

FIG. 7: Showing the raw shape of the Shallow CNN model

FIG. 8: Showing The learning curves for vanilla models, Grey: MLP, Pink: Large CNN, Green: Small CNN.
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FIG. 9: Showing the learning curves for different transfer learning models, Orange: EfficentNetV2L, Blue: Efficent-
NetV2B0, and Purple: MobileNetV3Small.

FIG. 10: Showing the learning curve of transfer learning model. Blue: full training no fine tuning, Yellow: Fine
tuning base Orange: Opening base (yellow model) layers for fine tuning.
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