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Abstract

With the increasing size and dimensionality of data, the interpretation and insight into

said data becomes hard to extract. In this investigation, we look at two non-linear di-

mensionality reduction methods; Laplacian Eigenmaps and Locally Linear Embeddings

(LLE). We look at the intuition, mathematical formulation and effectiveness of these

methods. We then apply those methods to data sampled from non-linear manifolds, and

observe their resultant embedding to gain insight into how the methods behave and their

effectiveness at reducing the dimensionality of the data.

We find that for some datasets LLE performs better while for others not so well, and

similarly for Laplacian Eigenmaps. The datasets that we used showed that LLE was

better at mapping the points to distinct values whereas, for many different choices of t,

Laplacian Eigenmaps gave plots where many points overlapped. This potentially speaks

to the sensitivity of the first method to the choice and proximity of neighbouring points

and how it is better at preserving variation in the data. However, Laplacian Eigenmaps

was able to capture an added feature of the data in that some completely distinct sections

of the data were close in the 3D space.
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1 Introduction

1.1 Background

Data with a high number of dimensions is often difficult to model and interpret. To

understand this concept on a theoretical level, consider the Euclidean distance between

two distinct points, xi and xj in a unit hypersphere. For every extra non-negative feature

we add to these points, we add a non-negative amount to the Euclidean distance between

them. Notice that despite the two points both being within the unit hypersphere, they

are increasing far apart by this metric. High dimensional datasets that are not limited to

the unit hypersphere fare worse and are often sparse despite existing underlying structure

in the data. This illustrates the problem of working with a sparse high-dimensional data

set or the Curse of dimensionality. This report ultimately questions if considering smaller

sections of our data set prove useful to understanding the aforementioned structures.

Figure 1: Effect of increasing dimensions on sparsity

Figure 1 shows a slightly different example and how the expansion in features causes

points that are seemly close in one dimension to be different in others. This shows the

problem for two dimensions but one can imagine that the issue is compounded when more

dimensions are added and the data set is no longer restricted to vectors with points drawn
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from a uniform random distribution on (−1, 1).

Linear dimensionality reduction techniques map the data set down to a lower dimen-

sion and circumvent the issue of high dimensionality. An example of such a method is

Principal Component Analysis. This specific technique uses the Singular Value decompo-

sition of the data to project it to a lower-dimensional space. The method uses the within

feature variance of the data and constructs new variables that maximize the variance of

the data set. A problem with this class of methods, however, is that they typically do not

adequately respect the proximity of ‘close’ data points and this information is not used in

the mapping to new variables/features. In this report, we use this notion of closeness be-

tween points in a data set to encompass images of the people driving with varying angles

of their face or two numerical high dimensional data points that vary in just a few features.

Linear dimension reduction techniques do not try and learn the underlying structure in

the data so the top two principal components of the images of the same person disregard

this information and focus on combinations of the features that show maximum variation.

In contrast, Non-linear dimensionality techniques place emphasis on points that are close

in the high dimensional space being close in the low dimensional space. The non-linear

techniques that we will focus on in this paper fall under a branch of unsupervised learning,

otherwise known as Manifold Learning.

This section of the report explores the topic of Manifold Learning, why it is needed in

contrast to the problems with PCA and how we assess the quality of a method. Section

2 disuses the methodology of the report and Section 3 begins the applications of these

methods.
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1.2 Manifold Learning

Manifold Learning has a central assumption which is that high dimensional data drawn

from real world scenarios lie on low dimensional manifolds embedded within the high

dimensional space. Loosely speaking the techniques associated with manifold learning

make the assumption that the original data set actually comes from the specified lower-

dimensional space and has been embedded in the high-dimensional space, to begin with.

With this assumption of an underlying structure within the data, we then use methods

such as LLE or SE to find the mapping that best describes this structure.

A manifold can be thought of as any surface in high dimensional space that can be

‘charted/mapped out’ or is locally Euclidean. To formally define a manifold, we must

first define a topological space as a set X that is equipped with a set of subsets U , which

are known as the open sets and they have the properties of being close under finite in-

tersections and arbitrary unions. Formally then, manifolds are topological spaces that

locally resemble Cartesian space. This means regions on the manifold appear to be flat

when viewed closely and this property is important because it forms the basis for map-

ping the data set onto a flat 2-dimensional axis. For the purposes of this report, the best

definition of a manifold is a topological space that is equipped with an atlas. This is a

collection of mappings to R2 that describe the manifold and this is exactly our goal when

attempting to visualize high dimensional datasets. From this, it is clear that treating

datasets as manifolds has some useful properties and lead to new interpretations of data

[C. Fefferman and Narayanan, 2016].

1.3 Potential Problems with PCA

Before using PCA it is reasonable to check for linear correlations between the features

of the data set. This is because standard PCA creates linear combinations of the exist-

ing features that try and maximize variance however if the features are already linearly
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independent then there is no need. This particular existence of correlations corresponds

to the covariance matrix of the data set having non-zero entries on either side of the

leading diagonal. Manifold Learning techniques take a different approach by computing

the similarity between points in the data set rather than the similarity between features.

Naturally, this means that pairwise relationships are largely destroyed by PCA and pre-

served by the techniques we will review in this paper.

Following on from the orthogonality of the new features computed by PCA, this prop-

erty means that the new projections created by PCA are constrained to this property

when there could be basis vectors that are much better at representing the information

in the data set. Also, the features have to be scaled before PCA reduces the dimensions.

This is another way in which the method destroys features in the data set especially if

the information of the weight of the variables has real-world implications. This leads to

the question of the interpretability of the new features. Originally if the features were

drawn from a real-world scenario, then their meanings are likely to be clear however linear

combinations of these meaningful features are typically less meaningful and can only be

referred to as principal components [Jolliffe and Cadima, 2016].

On the whole, the most important reason for investigating non-linear methods of di-

mension reduction is their ability to preserve pairwise relationships, and this is one of the

criteria we will use to assess the chosen methods.

1.4 Assessing the quality of a method

A useful way of comparing how well a particular method has mapped the data into a

lower dimension is to look at the co-ranking matrix Q of the points in the two dimensions

[Lee and Verleysen, 2009]. It does this by ranking the points by distance in both the

higher and lower dimensions (for each point) and then forms a matrix based on the

change in this rank once the relevant dimension reduction method has been applied. If

we define the distance between two points xi and xj as dij and then rij as the rank of xi

with respect to xj (or saying that xj is the rijth nearest neighbour of xi) can be defined
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by Equation 1.11 [G. Krämer and Mahecha, 2018].

rij = |{k : dik ≤ dij}| (1.1)

For the sake of notation we will define the rank in higher dimensional space as rij and

the rank in lower dimensional space as r̂ij. Comparing these ranks allows us to compute

Q whose elements are defined by Equation 1.2.

qkl = |{(i, j) : r̂ij = k, rij = l}| (1.2)

A simple way of interpreting the elements of this matrix qij is to say that this is the

number of points which had the rank j in the higher dimension that became rank i in

the lower dimension. From this definition it follows that in a perfect lower dimensional

representation the only non-zero entries in Q will appear in the diagonal and that any

non-zero entries in the upper triangle will be points that have been pushed further apart

than they were in the higher dimension and points in the lower triangle corresponding to

points which were initially further apart becoming closer in the lower dimension.

From the entries in Q we can now assess how well a method performs. For example,

a good measure of quality would be to test how similar the nearest neighbours in the

higher dimension is to the nearest neighbours in the lower dimension. One way of doing

this is to calculate the Local Continuity Meta Criterion (LCMC) [Chen and Buja, 2009]

which for a given k counts how many of the k nearest neighbours in the higher dimension

are still in the k nearest neighbours in the lower dimension (as a proportion), with an ad-

justment to account for random embeddings (you would expect that this measure would

be high for a large number of k nearest neighbours whether you apply an NDLR method

or just simply apply the dimension reduction at random hence the adjustment). This is

summarised by Equation 1.3 for a sample of size n.

LCMC(k) =
1

kn

k∑
i=1

k∑
j=1

qij −
k

n− 1
(1.3)

1The notation |S| refers to the number of elements belonging to a set S
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Adjusting LCMC to have a maximum of 1 allows for an easy measure for comparison

regardless of sample size and so the quality measure RNX can be defined by Equation 1.5

[Lee et al., 2013] where a perfect method would have an RNX value of 1 and a random

embedding would have an RNX value of 0.

RNK(k) =
n−1
kn

∑k
i=1

∑k
j=1 qij − k

n− 1− k
(1.4)

From this definition it follows that a large RNX value for low k represents a method

that preserves local distances between points well and a large RNX for high k represents

a method that does well in preserving global distances. As RNX is a function of k, this

measure also allows us to produce a plot (typically on a logarithmic scale) over all possible

choices of k to see how the performance of a particular method changes as k increases.

Calculating the area underneath the corresponding curve (AUCln(k)(k)))also allows for an

overall assessment in quality.

AUCln(k)(k) =

∑n−1
k=1 RNK(k)∑n−1

k=1
1
k

(1.5)

This measure is also normalised to have a maximum of 1 and due to it being on a

logarithmic scale, AUC rewards methods which are superior at preserving local distances

over global distances.

2 Methodology

2.1 Spectral Embedding

The first method of non-linear dimension reduction that we considered is Spectral Embed-

ding. This method reduces the dimensions of data on manifolds by defining the data using

Graph Theory and translating this into vector data by solving an eigenvalue problem pro-

duced from Spectral theory. Producing an embedding involves building a neighbourhood

graph with the high dimensional data, and preserving the maximum possible features of

the data in a lower dimension. An understanding of Graph Theory is required for this,

and is provided in Section 2.1.1.
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2.1.1 Graph Theory

Consider a data set with points x1, ...,xn ∈ RD present on a manifold. Graph Theory

is such that each data point is considered a ’node’ or ’vertex’ making up set V . These

vertices are connected by ’edges’ forming set E. Edges form only between nodes that are

considered ’close’ and the presence of an edge implies the vertices are connected. The

definition of close is dependant on context and relevant definitions shall be explored in

Section 2.1.2.2. A graph G can be defined as an ordered pair of sets V and E as G = (V,E)

and is considered connected if there exists a path along edges from any node u to any

other node v. A disconnected graph is divided into k connected sub-graphs G1, G2, ..., Gk

where G = (G1 ∪ ... ∪Gk) representing all of the data [Chartrand and Zhang, 2012].

Figure 2: Demonstration of a dataset represented as a graph

2.1.1.1 Spectral Theorem

Applying Graph Theory to data sets allows for the creation of adjacency matrices which

capture the relationship between vertices. By nature, these matrices are symmetric and

their properties will be shown below:

Consider a symmetric matrix A ∈ Rn×n. Every eigenvalue λ is real and has a corre-
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sponding real eigenvector u ∈ Rn, such that:

Au = λu

where these eigenvectors are also orthogonal, i.e. Au1 = λ1u1, Au2 = λ2u2, u1 · u2 = 0,

where λ1 ̸= λ2. Furthermore,

λi = min
x⊥u1,...,ui−1

xTMx

xTx
(2.1)

and

ui = argmin
x⊥u1,...,ui−1

xTMx

xTx

define the eigenvalues and eigenvectors using the Rayleigh Quotient. [Spielman, 2015]

2.1.2 Laplacian Eigenmaps

One application of Spectral Embedding is using Laplacian Eigenmaps. This method

approximates the Laplace-Beltrami operator by building a neighbourhood graph G of

the data and computing the Laplacian of this matrix. This allows the embedding of the

manifold to be found with the goal of the method being to preserve locality such that

nodes that are considered close ∈ RD (where D is the initial dimensions of the data),

remain close once dimensions have been reduced.

2.1.2.1 Laplace-Beltrami Operator

Applying the Laplace-Beltrami operator to a manifold finds the optimal embedding. This

is proven by considering an m-dimensional Riemannian manifold (M, g) present within a

Riemannian Structure ∈ Rl where m ≪ l. The operator is represented by:

∆gf = −div grad f = ∇ · ∇f

where f represents a function which maps points on the manifold to a real line, preserving

the closeness of data points such that f : M → R. The operator also requires f to be twice

differentiable as it computes the divergence of the gradient [Urakawa, ]. By considering

two neighbouring points, finding the following most preserves locality:

argmin
∥f∥L2(M)=1

∫
M

∥∇f(x)∥2,
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and minimising this is equivalent to finding the eigenfunctions of the Laplace-Beltrami

operator[M.Belkin and P.Niyogi, 2003].

The graph discretisation of the Laplace-Beltrami operator proves that the graph Lapla-

cian of the data is a sufficient approximation to the operator in finding the embedding.

This is because the eigenvalues and eigenfunctions of the operator are approximated by

the eigenvalues and eigenvectors of a suitably weighted Laplacian of a proximity graph

[Burago et al., 2014].

The solutions of the eigenvalue problem of the Laplacian matrix allow dimensions to

be reduced to a data set y1, ...,yn ∈ Rd where d ≪ D.

2.1.2.2 Closeness Definitions

The definition of close can now be revisited and how this is used to represent graph data

in a matrix reconsidered. In the context of Laplacian Eigenmaps, two common definitions

exist:

1. ε-neighbourhoods approach. Nodes xi and xj are considered close if the distance

between them (Euclidean distance ∈ RD) ∥xi − xj∥2 ≤ ε, where ε represents a

boundary around each vertex of radius ε.

2. k-nearest neighbours approach. Nodes xi and xj are considered close if one of

the nodes is within the k nearest neighbours of the other.

For either approach, the variable k or ε is chosen by the user. Both definitions have

their justifications. The ε-neighbourhood approach represents the geometric properties of

the data better than k-nearest neighbours, although choosing a suitable ε is often more

difficult than choosing k (since prior knowledge of the data is needed to determine what

might be considered close or otherwise). Applying a k-nearest neighbours approach is less

geometrically intuitive than ε-neighbourhood as it does not consider distance between

nodes, however this means there is less of a chance of producing disconnected graphs and

it is easier to implement in practice.
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2.1.2.3 Weighting edges

The definitions in Section 2.1.2.2 determine whether edges between vertices exist, however

in order to construct a Laplacian matrix that can be approximated to the Laplace-Beltrami

operator, the edges need to be suitably weighted. A weight matrix W ∈ Rn×n can be

produced in one of two ways:

1. Combinatorial. If an edge exists between xi and xj then Wij = 1

2. Heat Kernel. Where a Gaussian relation is applied depending on the Euclidean

distance between the nodes such that

Wij = e−
∥xi−xj∥

2

t (2.2)

where t is a parameter that the user decides (choosing t = ∞ is equivalent to the

Combinatorial method).

For both methods, all weights are non-negative if no edge exists, i.e. Wij = 0. Although

the Combinatorial method is more convenient as it removes the problem of choosing

a suitable t, it provides a Laplacian matrix which is a less close approximation to the

Laplace-Beltrami operator, potentially leading to poorer results when reducing the data.

This means it is usually advantageous to apply the Heat Kernel method, though this

depends on the size of the data set and how long it takes computationally.

The choice for the use of the Heat Kernel equation in the weights for the Laplacian

matrix stems from its relationship to the Laplace-Beltrami operator. Returning to the

manifold M as discussed in Section 2.1.2.1, f is now defined as an initial heat distribu-

tion, where f : M → R. The heat distribution at time t is u(x, t) and the heat equation

is:

(
∂

∂t
+∆M)u = 0. (2.3)

A solution to the heat equation is the following: u(x, t) =
∫
M H(t, x, y)f(y), where

H(t, x, y) is called the Heat Kernel [Cruz, 2003]. The Heat Kernel H(t, x, y) can be

approximated by the following:

H(t, x, y) ≈ 1

(4πt)
m
2

e−
∥x−y∥2

4t , (2.4)
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assuming that x and y are sufficiently close, t is small and an exponential co-ordinate

system is used [M.Belkin and P.Niyogi, 2003]. If x and y represent points xi and xj

within M, which are packed densely, the integrals can be replaced with summations.

Then as t → 0, substituting Equation 2.4 into Equation 2.3, gives:

∆Mf(xi) ≈
1

t

[
f(xi)−

1

k

1

(4πt)
m
2

∑
xj

e
∥xi−xj∥

2

4t f(xj)
]
, (2.5)

since
∫
M H(t, x, y)f(y) → f(x) as t decreases. This equation is a constant equation and

so applying the Laplace-Beltrami operator gives a result of 0 (as the function is not twice

differentiable). Therefore for the right hand side of Equation 2.5 to equal 0, the following

must be true: (1
k

1

(4πt)
m
2

)−1

=
∑
xj

e
∥xi−xj∥

2

4t .

This is validates the use of the Heat Kernel in choosing weights for the Laplacian matrix,

as it is analagous to weighting in this context.

2.1.2.4 Laplacian Matrix

The graph structure of the data has been captured in matrix W , and so now G =

(V,E,W ). The Laplacian matrix L can now be computed and is defined as L = D −W .

Degree matrix D ∈ Rn×n is a diagonal matrix with entries Dii =
∑n

j=1 Wji. Solving

eigenvalue problem

Lf = λDf (2.6)

gives non-negative real eigenvalues, due to L being a positive semi-definite matrix.[Mittal, ]

Ordering the eigenvalues as follows:

0 = λ0 ≤ λ1 ≤ ... ≤ λn−1

gives eigenvectors f0, ...,fn−1. This allows the creation of points y1, ...,yn ∈ Rd, such

that the embedding of the high dimensional data in d-dimensions is:

yi → (f 1, ...,f d)

Note the embedding starts from eigenvector f 1. This is because eigenvalue λ0 = 0 with

corresponding eigenvector f 0 = 1 ∈ Rn. This result is due to matrix L being symmetric
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and its rows and columns of summing to zero. [G.Chen, ].

To demonstrate the goal of the method introduced in 2.1.2, it can be shown that the

Laplacian Eigenmap algorithm optimally preserves locality in the embedding. For this

to be the case, consider a fully connected graph of data (x̂i, ..., x̂n) ∈ RD. The algo-

rithm would find reduced dimension points (ŷi, ..., ŷn) ∈ R1 by minimising the following

function: ∑
ij

Wij(ŷi − ŷj)
2

under some appropriate constraints which removes trivial solutions. Minimising the func-

tion ensures data points remain close due to the choice of Wij. If points x̂i and x̂j are

close, Wij will be close to 1, applying a large penalty if ŷi and ŷj are not close. Function

2.1.2.4 can be expanded to:∑
ij

Wij ŷ
2
i +

∑
ij

Wij ŷ
2
j − 2

∑
ij

Wij ŷiŷj

and since Dii =
∑n

j=1Wji this becomes:∑
i

Diiŷ
2
i +

∑
j

Djj ŷ
2
j − 2

∑
ij

Wij ŷiŷj

Let Ŷ = (ŷ1, ..., ŷn)
T , and so the above reduces to:

2Ŷ
T
DŶ − 2Ŷ

T
W Ŷ

= 2Ŷ
T
(D −W )Ŷ = 2Ŷ

T
LŶ

The above also proves matrix L is positive semi-definite, as was stated with Equation 2.6.

This then means that:

Ŷ
T
LŶ =

1

2

∑
ij

Wij(ŷi − ŷj)
2 (2.7)

and so the minimisation becomes:

argmin
Ŷ

T
DŶ =1,Ŷ

T
D=0

Ŷ
T
LŶ

where the constraint Ŷ
T
DŶ = 1 removes an arbitrary scaling factor, and constraint

Ŷ
T
D = 0 eliminates the trivial solution of 0 for the smallest eigenvalue. Applying Equa-

tion 2.1 gives Equation 2.6 as the eigenvalue problem for the optimal embedding. This is
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the case for a 1-dimensional embedding. For higher dimensions, the same result is found

where the minimisation function is now:

∑
ij

Wij(yi − yj)
2 = trace(Ŷ

T
LŶ )

where Ŷ = (ŷ1, ..., ŷn)
T ∈ Rd. Similar to the 1-dimensional case, the function becomes:

argmin
Ŷ

T
DŶ =I,Ŷ

T
D=0

trace(Ŷ
T
LŶ )

once again giving Equation 2.6 as the eigenvalue problem for the optimal embedding, from

applications of the Spectral Theorem. In this case, the constraint constraint Ŷ
T
DŶ = 1

prevents a collapse onto a smaller than d-dimensional subspace[M.Belkin and P.Niyogi, 2003].

2.2 Locally Linear Embedding

Locally Linear Embedding (LLE), is an unsupervised dimension reduction algorithm. In

this section, LLE is explained, by looking at the goal, the assumption it makes and the

algorithm behind the method.

2.2.1 Mapping a D-dimension vector to d-dimensions

The primary goal of LLE is to reduce the dimensions of our dataset going from a D-

dimensions manifold to a different d-dimension manifold, where d << D. For an example

manifold (Swiss roll), we generally would want to discard the manifold, and preserve the

local relationship between an instance (xi) and its k-nearest-neighbours (local neighbour-

hood).

Generally an instance of data could be represented as a vector. We can think of high

dimensional datasets as high dimensional vectors (D-dimensions). Figure 3 represents

the unitary components of a D-dimensional vector (each arrow is orthogonal to the rest).

It’s impossible for us to visualise such vectors completely, and therefore we cannot plot

the dataset and gain insight.
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Figure 3: Showing a non accurate representation of a D-dimension vector’s unit compo-

nents, where each arrow is orthogonal to every other arrow.

However, if we can accurately reduce the dimensions of D-dimensional vectors to

d-dimensions (4), then we can have a representation of the dataset that we could com-

prehend and therefore gain insight from. Furthermore, some other machine learning

models/algorithms (Neural networks, SVM, Random forests) struggle when training with

D-dimensional data, therefore we could also use our reduced d-dimensional representation

of the dataset to train such models.

Figure 4: Showing a 3 dimensional vector with its orthogonal components in 3-dimensions.
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LLE focuses on reducing the dimensions of the dataset while maintaining the rela-

tionship between local neighbourhoods. To illustrate this Figure 5 shows the result when

LLE is applied to the Swiss roll manifold. (A) represents the D-dimensional manifold,

(B) represents the D-dimensional dataset and (C) represents the d-dimensional output

of LLE. As you can intuitively observe, the relationship between local neighbourhoods is

preserved, and a significant amount of information from the manifold is extracted while

omitting the manifold it self. In other words we have correctly obtained a mapping (this

could have been a non-linear manifold; this will be clearer later) of the Swiss roll.

Figure 5: [Roweis and Saul, 2000] Showing the result of LLE (C) when applied to a

sufficient dataset (B) of the example manifold (A).

By analogy, LLE can be compared to a scanner, by looking at Figure 5, we can observe

that the purple section is scanned first, followed by the blue, yellow and finally the red

sections. This scan or unrolling of the manifold is what LLE aims to achieve. In Figure

6 [Saul and Roweis, 2001], we see a comparison between PCA and LLE when applied to

a dataset of noise behind faces. We can clearly see that LLE is better at preserving the

neighbourhood structure of the data.

A further discussion of the results obtained by applying LLE on toy and real datasets is

in Section 3.
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Figure 6: [Saul and Roweis, 2001] Showing a comparison between LLE (bottom) and PCA

(top), when applied to a dataset of noise behind faces.

2.2.2 Assumptions made by LLE

A linear embedding is simply a set of vertices connected to each other, and they represent

a dimension. This is illustrated in Figure 7, where each dimension has a linear embedding

associated with it.

Figure 7: Showing a representation of linear embeddings. 0) A dot is a linear embedding

in 0-dimensions. 1) A Line is a linear embedding in 1-dimension. 2) A square/plane is a

linear embedding in 2-dimensions. 3) A cube is a linear embedding in 3-dimensions.4) A

tesseract/hyper-cube is a linear embedding in 4-dimensions. And so on.
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The algorithm of LLE as discussed in Section 2.2.3 , starts by obtaining a sample of

k-points from the local neighbourhood of a point xi. The mathematics/method behind

LLE then makes the assumption that those k-points/local-neighbourhoods lay on or near

a linear embedding (hence the name locally linear embedding), most of the time this

linear embedding on which local neighbourhood lay are of dimensions (D - 1). Therefore,

for a 3-dimensional dataset (5) we expect that any local neighbourhood lay on a (3 - 1)

dimensional linear embedding in this case it is a plane.

2.2.3 Algorithm

The algorithm behind LLE has three main parts, with goal being to reduce aD-dimensional

vector to d-dimensions while also maintaining the relationship between local neighbour-

hoods of the manifold. However, it is important to understand that LLE maps from D to

d-dimensions a single point/vector at a time, and this is done for every single point/vec-

tor in the dataset. The key behind maintaining neighbourhood relations comes from the

use of the k-nearest neighbours to point xi. Figure 8 shows the general outline of the

algorithm when a single vector is mapped to a lower dimension.

Figure 8: Showing the outline of the LLE algorithm. 1) Selecting the k-nearest neighbours

of point xi. 2) Using linear weights, we create a reconstruction of point xi. 3) Mapping

the point xi into a lower dimensional vector of d-dimensions.
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The algorithm begins by calculating the k-nearest neighbours of any point i from the

dataset.

2.2.3.1 k-nearest neighbours

The first part of the algorithm is to simply find the k-nearest neighbours. The number

of nearest neighbours for the point xi is given by k, which is a hyperparameter of LLE.

Once k is defined, we find the k-nearest neighbours by calculating the Euclidean distances

(Equation 2.8) between xi and every other point in the dataset, then selecting the k-

minimum distances observed. Each of those points is then assigned a weight, the weights

of all k-nearest neighbours are then used to calculate a reconstruction of point xi.

d(p, q) =

√√√√ D∑
i

(qi − pi)2 (2.8)

2.2.3.2 The weights

Following the calculation of the k-nearest neighbours to point xi, we proceed by assigning

a random weight to each of the neighbouring points. A unique property of the weights is

that they must equate to one, reasons for this will be discussed later in Section 2.2.3.6.

The reason behind giving each neighbouring point a weight is to create a reconstruction

of point xi.

2.2.3.3 Calculating a reconstruction

The reconstruction of the point xi is obtained using the following expression:

reconstruction(xi) =
K∑
i

WiX⃗i (2.9)

Where xi is our target point, Wi being the weights and Xi representing a neighbouring

point to xi.

2.2.3.4 The Reconstruction error with D-dimensional vectors

Initially the weights are arbitrarily selected, while respecting the condition that they

sum to one. However, LLE aims at obtaining the optimum weights that best reconstructs

point xi. Those optimum weights are obtained by minimising the following reconstruction
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error cost function:

ε(W ) =
∑
i

|X⃗i −
∑
j

WijX⃗j|2 (2.10)

where ε(W ) is the reconstruction error as a function of the weights, and the inner sum is

the reconstruction of the unit vectors of the target point/vector, here both X⃗i (Target)

and X⃗j(Part of the k-neighbours) are vectors from the dataset and are known. Equation

2.10 reads as follows:

”For every unit vector of Xi do and sum the following: calculate the difference between

the reconstruction (of the unit vector) and the real value of said unit vector.”

2.2.3.5 Optimising the weights

Refer to appendix ??, where a constrained least squares problem is solved in order to

minimise the cost function and obtain the optimum weights.

2.2.3.6 Properties and significance of the weights

In previous Sections (2.2.3.2 & 2.2.3.4), it was briefly mentioned that the weights of the

reconstruction defined in Equation 2.9 equate to one, and that this rule is significant for

LLE to work correctly. The goal of LLE as mentioned at the start of this current Section

2.2 is to remap from D-dimensions to d-dimensions while maintaining local relationships

between the neighbours, therefore, by design, the reconstruction weights reflect intrinsic

geometric properties of the data [Saul and Roweis, 2001], those properties are invariant

to the Scale, Rotation and Translation of the data. This means that the weights that

reconstruct a point, are constant despite a change in those properties.
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Figure 9: Showing the invariance properties of a linear manifold as a result of the recon-

struction weights equating to one.

Furthermore, suppose the whole dataset lay on or near a non-linear embedding of

d-dimensions, where d << D, we can therefore say that local neighbourhoods can be

mapped onto this non-linear embedding. This remapping is done by means of re-scaling,

rotating and translating those neighbourhoods. Those transformations as previously men-

tioned are made invariance by design through the weights, therefore, we would expect that

the local geometry of the remapping in d-dimensions to be similar and valid when com-

pared to the local geometry of the originalD-dimensions manifold [Saul and Roweis, 2001].

To illustrate this lets consider Figure 10, here as captioned, the fox can represent a D-

dimensional non-linear manifold, we can (non-formally) picture how we can reconstruct

the fox in d-dimensions by cutting the it into smaller linear pieces, and placing them onto

a non-linear manifold of d-dimensions in a logical order that respects the original higher

dimension manifold i.e respecting the geometric relationships between local neighbour-

hood.
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Figure 10: Showing an intuitive example of how LLE operates, the fox represents a non-

linear manifold, which could be cut into pieces and placed into a d-dimensional non-linear

manifold that preserves local relationships.

However, formally, this is done by recalculating the vectors that best reconstruct the

point xi in d-dimensions, while keeping the weights constant.

2.2.3.7 Calculating d-dimensional vectors

To calculate the d-dimensional vectors, the embedding cost function in equation 2.11,

which takes in the weights as a constant for each point; and computes the reconstruction

error for the remapped vector [Roweis and Saul, 2000], has to be minimised in order to

obtain the optimum reconstructions. To minimise this embedding cost function we can

solve a sparse N ×N eigenvalue problem. This is detailed in Section ??.

Φ(Y ) =
∑
i

|Y⃗i −
∑
j

WijY⃗j|2 (2.11)

Finally, given the minimised reconstruction vectors obtained by solving the sparse N×N ,

LLE manages to reduce the dimensions of the original D-dimension manifold into a non-

linear d-dimension manifold, while also preserving geometric relationships between locally
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linear neighbourhoods. A further discussion about the effectiveness of LLE when applied

to different data sets; and when compared to other methods, is in Section 3.

2.2.4 Optimising of k

Before applying our LLE to a data set, we consider the two parameters involved with this

method: the number of nearest neighbours for each data point, k, and the dimensionality

of the embedded space, d. The parameter, d, can be seen as the minimal number of

degrees of freedom needed for us to generate our original toy data set from the data on

the embedded space we produce from using LLE.

With any data we are visualising a Rn data set from an n-dimensional space to a

lower-dimensional space, so we are able to see our parameter d as fixed, which means that

the only parameter to be estimated before LLE on our toy data set is k.

We want to find our optimum value for k as when the number of nearest neighbours

is too large, smoothing occurs where the small-scale structures across the manifold dis-

appear. Contrary to this, if we choose a value of k that is too small, this can lead to the

divide of the continuous manifold which would be the data, into disjoint sub-manifolds,

which makes it hard for us to visualise our original manifold on the new lower-dimensional

embedded space [Kayo, 2006].

We are therefore finding an estimate that shows our high-dimensional structure in

the best possible way on our embedded space, hence we will measure the quality of our

estimates on the residual variance, 2.11, of each value, defined as 1 − ρ2DXDY
, where ρ is

our standard linear correlation coefficient taken over all our entries from our matrices of

Euclidean distance DX DY of X and Y , where X and Y construct the data that has been

produced on our embedded space during LLE when the reduced dimensional space is now

two-dimensional, as an example. Furthermore, as we are looking for the minimal residual

variance, we can determine kopt as

kopt = argmin
K

(1− ρ2DXDY ...). (2.12)

Our R function calc K uses the hierarchical method for the automatic selection of the

optimal number of nearest neighbours. We choose a set that could contain our kopt values

(without proceeding with the LLE steps) and calculates the optimal measure for each

26



value in the set via computing residual variance. Then it finds the value with the best

optimal measure, meaning residual variance is minimal [Kouropteva et al., 2002]. The

function therefore can be described as follows:

• Select an interval for k that we assume contains our kopt value.

• Caclulate ϵ for each k, k ∈ [kmin, kmax], according to 2.10.

• Find all minima of ϵ(k) and corresponding k’s.

• Run LLE on each value of k collected, computing the residual variance .

• Selects kopt according to 2.12.

3 Application, Results and Discussion

3.1 Applying dimension reduction methods to a toy data set

This theory can now be applied to a toy data set to see how the methods discussed

behave in practice and how changes in the various parameters (if applicable) affect the

lower dimensional representation. A data set of a ”Swiss Roll” shape with 2000 randomly

selected points was generated to test out the affects of changing the different values

as mentioned above [G. Krämer and Mahecha, 2018]. Figure 11 shows a 3-dimensional

illustration of the data set. The goal of non-linear dimension reduction is to ”unroll” the

Swiss roll with local distances between points being preserved but with the general shape

being removed (in this example the general shape being the curves of the Swiss roll). In

practice this means that the ideal shape for the 2-dimensional representation of the Swiss

roll would be a rectangular plane with it ranging from red and blue at one end to yellow

and green at the other.
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Figure 11: A toy swill roll data set with 2000 data points

3.2 PCA applied to the Swiss roll

The first thing to test is whether PCA really does produce a poor representation of the

data in 2-dimensions. Figure 12 shows the representation that PCA produces for the

dataset shown in Figure 11. The Figure shows that a plane which contains 2 distinct

layers merged into each other (orange to red, teal to blue being the first and orange to

yellow, teal to green being the second). When looking at Figure 11, this plane seems to

be equivalent to producing a plane that only looks at the points in the z and y axes (an

equivalent way of saying this would be to say that PCA has taken a picture while standing

on the y axis), while making no attempt to unroll it. In this regard PCA has done well at

preserving the global picture of the data but has performed poorly at a local level, where

the non-linear change as the Swiss roll curves has been ignored. To capture this, we can

apply the non-linear methods as discussed in Section 2.
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Figure 12: PCA has produced a plot which poorly represents the local distances in the

Swiss roll as it bends

3.3 Laplacian Eigenmaps applied to the Swiss roll

The challenge for Laplacian Eigenmaps is to see which values of the parameters leads to

the best results for this data set. Using the k-nearest neighbours approach for a fixed t

= ∞ (this is easier to implement without prior knowledge of the distances between the

points in the data), we can plot the relevant changes to k to see how the 2-dimensional

representation changes. Figure 13 shows how the representation changes for varying val-

ues of k. A choice of k = 2 leads to an extremely poor representation of the data due to the

number of links between points being so small that it leads to a disjoint graph. Increasing

k slightly so that it is still small but large enough such that the graph is connected leads

to a parabolic-like shape which captures the general shape of the data but ignores the

width of the data. A geometric interpretation is that in Figure 11 the representation of k

= 5 has unrolled the Swiss Roll but has taken a picture looking at the x-z plane whereas a
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more useful approach would be to take the picture looking at the x-y plane as this would

encapsulate the length of the Swiss Roll.

As k increases, the picture seems to twist to start to show the length of the Swiss roll

(though it seems to show the length of the red-blue end of the Swiss roll far quicker than

the green-yellow end). This continues until a certain point where the closest neighbours of

a given point include points from the ”lower level” of the Swiss roll. This causes the two

ends to merge (you can start to see this merger at k = 40) and as the k = 80 plot shows,

the two ends have completely merged and the 2-dimensional representation is meaningless

as there are too many connected points and you can no longer see the difference between

the two ends of the Swiss roll.

Figure 13: For a constant t = ∞, the effects of changing k on the 2-dimensional repre-

sentation of the Swiss roll

We now have an idea of how changing k affects the 2-dimensional representation of

the Swiss roll but the other variable to change is t. Figure 14 shows how various values

30



of t affect the plot for k = 5 neighbours.

Figure 14: For a constant k = 5, the effects of changing t on the 2-dimensional represen-

tation of the Swiss roll

Figure 14 shows that the change in t has caused very little change in the approximation

for a small value of k. This is because there are only 5 non-zero entries in the Laplacian

anyway and since these values are all similarly close to one another, the change in weight-

ing for each point makes little difference to the eigenvalues and subsequent 2-dimensional

representation. We can contrast this to a larger k (where points that are connected in the

graph may differ far more in their distance) where t seems to have a far greater impact

on the 2-dimensional representation. Figure 15 shows this impact for k = 40 (the best

choice presented on Figure 13). For a small t the plot is almost identical to that when

k = 5 as the weightings are significantly higher for closer points and although there are

more connected points when k = 40, the points whose distance is furthest away is so far

away that the values in the Laplacian are not that much greater than zero, causing a

representation which is similar to if the weight was zero. As t increases the points that
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are connected but further away have more weight applied to them and so the differences

between the different k values can be more easily seen.

Figure 15: For a constant k = 40, the effects of changing t on the 2-dimensional repre-

sentation of the Swiss roll

For this toy data set, due to increased weighting of further out points, it appears that

a greater choice of t and k is preferred though only up to a point, seemingly selecting t

to be around 2% of the total number of points (this number seems to be the cutoff when

briefly applied to different number of points in the Swiss roll) as otherwise the Swiss roll

ceases to be unrolled and the 2 ends merge with each other. This theory can be tested by

applying plotting Equation 1.5 for different values of k and t mentioned in this section.

Figure 16 2 shows that the theory described above is matched by the data with the overall

quality being highest for k = 40 and t = ∞ as well as providing a better quality measure

for all but the extreme global distances.

2A reference of 20,5 refers to k = 20 and t = 5
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Figure 16: A choice of k = 40 and t = ∞ is the best choice here

3.4 LLE applied to the Swiss roll

3.4.1 Determining the optimal value of k-nearest neighbours

Figure 17 shows the output from using calc K and makes it transparent how the optimal

value of k, in our case kopt = 14, is chosen. All that is needed to do then is to extract the

corresponding k value to the minimum residual variance and then run the lle function

with that number of nearest neighbours for our data.

However, in R, the lle function does not use the sparsity matrix of the function, so

by finding an optimal value of k and simulating a well sampled manifold, like our Swiss

roll data set, we have reduced the error of using this lle package.
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Figure 17: By providing an interval we believed to contain kopt, we produced the minima

of residual variance for all values of k to see which was the optimal choice of k, for the

swiss roll data kopt = 14.
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3.4.2 Applying LLE to the Swiss roll

Figure 18: Using LLE with different values for number of nearest neighbours, k =

10, 14, 19. kopt = 14 so as expected our data on the embedded space when number of

nearest neighbours for LLE is 14 was our best method.

Figure 18 shows how LLE with optimal number of nearest neighbours produces our toy

data onto a lower dimension embedded space. Using Figure 17 we also chose to produce

plots when using non optimal number of nearest neighbours to compare. It is apparent

that it was effective to calculate the optimal number of nearest neighbours as our manifold

for k = 14 produced a plot of data that retains the shape of our unraveled Swiss curl while

still incorporating the characteristics of our data, clearly preserving the local distances

between neighbouring data points. On the contrary, these number of neighbours were

expected to all produce somewhat well preserved plots as their residual variance from

figure 17 only varied by roughly 0.05.
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3.5 Plotting RNX for Swiss roll dimension reduction

Figure 19: The area under the graph on the left hand side suggests that LLE is the best

at preserving distances locally while PCA is the best at preserving global distance across

the data set, suggested from the area under the right hand side of the graph.

Figure 19 shows us how well distances are preserved within our Swiss roll data when we

follow through with dimension reduction techniques via the area under the graph. The

left hand side portrays efficiency at more local distances while the right hand side shows

how well distances are preserved more globally across the data set, meaning how well the

overall shape of the data set is retained.

We can therefore suggest that LLE was the best technique for dimension reduction as

we are more focused on preserving local distances so that we can keep the characteristics

of the small-scale structures within our data better.

36



3.6 Testing NLDR on real data sets

3.6.1 DrivFace dataset

We can now apply these methods to real data sets to see how they perform in practice.

The first data set we considered consisted of 606 80x80 pixel pictures of four different

people driving in real scenarios, with variations in the direction that the head is tilted

[Diaz-Chito et al., 2016]. For clearer pictures the drivers also had distinctive facial fea-

tures such as glasses. Figure 20 shows the 2-dimensional representation of the data from

Laplacian Eigenmaps using the optimal choice of the parameters (these were found using

similar methods to that in Section 3.1). Example images are also overlaid to show an

illustrative example of what the different points in the plot correspond to.

Figure 20: Laplacian Eigenmaps applied to face data with parameters. ε =1000, t=500.

Figure 20 shows that Laplacian Eigenmaps has separated the data into three distinct
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clusters (these will be referred to as the left, middle and right clusters) with the x axis

appearing to represent the brightness of the image (with this seemingly also related to

which driver the picture is of) and the y axis representing the direction the face is looking.

The clusters are separated however with the left and the middle clusters being noticeably

different people to that of the right cluster. The right cluster also appeared to have

merged two different people into the same cluster with the shape of the glasses changing

from the top image on the right to the bottom. This suggests that while the people

are different, the images are similar enough (at least compared to the other two people)

that Laplacian Eigenmaps has treated them as the same person. Figure 21 shows how

Laplacian Eigenmaps and LLE compares to PCA for this dataset by plotting the RNX

function as discussed in Section 1.4.

Figure 21: RNX comaprison for the three dimension reduction techniques for the face

data.
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Figure 21 shows that the three methods are almost identical for local distances with

all three methods providing remarkably poor representations of the data. This is likely

due to the fact that the manifold isn’t continuous (as shown by the disconnected points

in Figure 20) and so Laplacian Eigenmaps and LLE both struggle to separate the points

out due to them already being separated anyway. As expected, PCA performs better for

global distances and so if the data is disconnected in any way (such as pictures of multiple

people) then the data can’t be projected onto a manifold and so PCA is a better method

to use.

3.6.2 MNIST dataset

The second dataset we considered was the MNIST dataset used in the labs. This dataset

consists of 200 16x16 pixel hand drawn images of integers from 0 to 9. This dataset is

often used as a way of producing a model to predict the value of future drawings though

this consists of a dimension reduction step and thus allows us to compare how different

methods perform when reducing the dimension. Figures 22, 23 and 24 show how the

different methods represent this data in 2 dimensions, with the labels representing what

digit each drawing was supposed to represent.

Figure 22: PCA applied to the MNIST data
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Figure 23: Laplacian Eigenmaps applied to the MNIST data

Figure 24: LLE applied to the MNIST data

While all the methods seem to separate the 1s well, Figures 22, 23 and 24 show

that the other digits are far less defined into clusters for PCA compared with Laplacian

Eigenmaps and LLE, with the latter two methods showing far greater distinction between
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the numbers (for example numbers 3 and 6). As before, the RNX plot was also computed

to see whether the visual interpretation matched the reality of how good the methods

performed.

Figure 25: RNX plot for the various methods when applied to the MNIST data

While all the graphs have a similar area under the curve, Figure 25 shows that the

non-linear methods perform better than PCA for the closest neighbours as expected and

like the Swiss roll toy data, this shows that if the data can be easily projected onto a

manifold (it seems that this data can be) then NLDR methods are superior to PCA.
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4 Conclusion

This investigation found informative embeddings for the Swiss roll toy dataset using Lapla-

cian Embedding and Locally Linear Embedding. The dataset was chosen to highlight the

power of these methods against the standard PCA technique. We found the methods

to be very sensitive to hyperparameters so future work should involve using grid search

methods to robustly find the best values otherwise insightful mappings could be missed.

The RNX metric that was introduced behaves in the manner that was expected across the

different methods and values of k. For large k, PCA outperforms the non-linear methods

when the resulting displacement of neighbours after the dimension reduction is consid-

ered. However the opposite is true when we score the embeddings by the displacement of

a low number of neighbours. Initially, we expected that PCA would fail massively because

of what the method does to the manifolds visually but by this metric it’s performance is

comparable in terms of maintaining the pairwise relationships.

These embedding offered an ideal template to produce further work on image data. There

is potential to work on a model that uses embeddings to cluster different types of images

based on how well the different colourings in the Swiss roll dataset were clustered by LLE.

The results of the Laplacian Eigenmapping were also promising because the method was

able to adequately capture the neighborhood region of points when k was changed. This

suggests that similar results will be found when working on data that is less accepting to

visualisations of the whole dataset.
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