
Research Notes

Mustafa Omar1

1Physics and Astronomy, University of Nottingham
(Dated: June 7, 2022)

In this document all that is present are notes taken as the research progressed, the notes are
structures in order of progression and are unfiltered raw thoughts and steps. with no respect to
grammar.

WEEK 0 & 1: MULTI-AGENT RL BASELINE

- Reading the provided tutorial
Reading the provided tutorial in [1] to obtain an initial idea of problem at hand. The tutorial teaches the basic

API of petting-zoo [2] to enable the creation of a customisable environment (a game), this environment is further
refined using super-suit [3], which is a wrapper that allows the environment to be further customised and controlled.
Finally the tutorial shows how to use a stable-baselinesv3 [4] Cnn model to learn a policy for the given environment.

- Reproducing the tutorial for understanding
I’ve copied the tutorial [1] verbatim in order to ’reproduce it’, this has simply exposed me to the aforementioned

APIs, the only question is how would I proceed from here ?, currently the model is training on a CPU alone, utilising
only two cores, this is expected to take at least a couple of hours, I have no clear reference of how to speed things up
here (unfamiliar with what exactly PPO is doing).

- Reading ch13 of Richard S.sutton
Seems like the only way forward is to read ch13 of the provided book Richard S.sutton [5] , this chapter introduces

me to multiagent reinforcement learning, the problem is, once ive learned this chapter how will that knowledge be
used to work with tensor networks ?

- Notation
I was given an alert that the notation when researching/(writing the report) may be an issue, so this should be a

primary conscious concern from the beginning.
1) notation will match the given notation in [5] (Section:summary of notation), for reinforcement learning. also

shown in Appendix A
2) Notation for Tensornetworks will be...

- Coding my tensor network layer
At some point im expecting to have to write my own tensor network in jax [6], at the point of writing this I have

no image of how this is going to look or work, and how I’m then going to get it to work with a regular network and
for back-propagation to work,

- dig into cnn architecture
The model saved after following the tutorial in [1] is saved as a ’PPO’ object, ppo appears to be a wrapper around

the CnnPolicy network that manages hyper-parameters (works for many policies of course), using ppo we can obtain
the parametrs of the network but I will have to find a way to obtain the actual structure of the CnnPolicy itself,
as in layer details. this is possible to reconstruct by observing the structure of the parameters and making a few
educated guesses, but to definitely know the exact structure, including activation, pooling and etc, I will have to
find that information thought the documentation code. Fastforward, i have found the network architecture, and the
assumption that i couldve found the architecture by guessing from the parameters is a horrible one, this is because
things like the stride of the CNN, such parameters when accumulated are impassible to ’guess’; this was a naive
assumption.

- How the stable base line Cnn policy is structured
There appears to be four parts, the NatureCnn [7], the shared network, the policy network and the value network,



2

in this case the shared network is empty and the NatureCnn is dubbed the ’feature extractor’, the policy and value
networks are the agent and critic respectively, in terms of information flow in the code in the tutorial [1] it looks like
this:

NatureCnn -) policy
NatureCnn -) value
Where the NatureCnn is shared. In the documentation for PPO, stable base-

lines3.common.policies.ActorCriticCnnPolicy, takes net arch (network architecture as input), as well as a feature
extractor, deeper into the documentation, an MLP extractor is used. Depnding on if the the feature extractor is used,
the network architecture is left empty or a hardcoed archetecture is used. both net arch and the feature extractor
are then used to build the neural netowrk.

- Building my own nature CNN in jax
The code displayed below is my own version of the NatureCnn architecture displayed in the documnetation of

stablebaselines, Haiku infers the input dimention when initialising the network, hence the missing initial variable
when compared to the source.

FIG. 1: NatureCnn architecture stable baseline

FIG. 2: Haiku NatureCnn [7]



3

apply_fn

NatureCNN_l1

xla_call (relu)

NatureCNN_l2

xla_call (relu)

NatureCNN_l3

xla_call (relu)

flatten

NatureCnn_l4

policy_net

policy_net/~/linear_0

value_net

value_net/~/linear_0

conv_general_dilated
f32[32,20,20,32]

add
f32[32,20,20,32]

broadcast_in_dim
f32[32,20,20,32]

max
f32[32,20,20,32]

args[2]
f32[32,84,84,4]

args[0]: NatureCNN_l1/w
f32[8,8,4,32]

args[0]: NatureCNN_l1/b
f32[32]

convert_element_type
f32[]

conv_general_dilated
f32[32,9,9,64]

0

convert_element_type
f32[]

convert_element_type
f32[]

add
f32[32,9,9,64]

broadcast_in_dim
f32[32,9,9,64]

max
f32[32,9,9,64]

args[0]: NatureCNN_l2/w
f32[4,4,32,64]

args[0]: NatureCNN_l2/b
f32[64]

conv_general_dilated
f32[32,7,7,64]

add
f32[32,7,7,64]

broadcast_in_dim
f32[32,7,7,64]

max
f32[32,7,7,64]

args[0]: NatureCNN_l3/w
f32[3,3,64,64]

args[0]: NatureCNN_l3/b
f32[64]

reshape
f32[32,3136]

dot_general
f32[32,512]

add
f32[32,512]

broadcast_in_dim
f32[32,512]

dot_general
f32[32,1]

dot_general
f32[32,1]

args[0]: NatureCnn_l4/w
f32[3136,512]

args[0]: NatureCnn_l4/b
f32[512]

output[0]
add

f32[32,1]

broadcast_in_dim
f32[32,1]

args[0]: policy_net/~/linear_0/w
f32[512,1]

args[0]: policy_net/~/linear_0/b
f32[1]

output[1]
add

f32[32,1]

broadcast_in_dim
f32[32,1]

args[0]: value_net/~/linear_0/w
f32[512,1]

args[0]: value_net/~/linear_0/b
f32[1]

FIG. 3: Haiku full actor critic model dot graph

- copy weights from trained model into my own architecture
The next task is to take the parameters of the model generated by the PPO algorithm and use those within my

own architecture. In the parameters of the PPO model, there appears to be a ’log std’ layer (first layer), this is a
scalar value and i have no idea what it is. apart from that, the network I created matches the strucutre of the PPo
model exactly, the only thing left is to reformat the parameters so they’re transferable. (what will i do with the ’log
std’ scaler value ? ). Now I have successfully transferred the parameters from a PPO model to my own Haiku model
and successfully run a forward pass.

- Confession
So far the ’trained parameters’ aren’t really trained (training takes a few hours + im lazy), they’re initial PPO

model params, and i have not yet successfully observed the ’untrained’ PPO model to be running on the environment
(difficulty with colab visualisations) i have the code for everything but too impatient to wait, this is a step that was
skippable until I have a clear idea of the whole process. After completing the next step i will proceed by training the
PPO model, then taking those params and using them on my haiku architecture before moving on with the research.



4

WEEK 2: VALIDATION, SETUP COMPLETION AND RL METHOD EXPLORATION

- Github for code
I begin by moving the code base away from colab, and would resort to only training models on the it. Furthermore I

proceed to adapt my code such that it follows the test first paradigm, where unit tests are created to test functionality
before the different functionalities are used together to obtain an output. The code is open sourced and can be
viewed here https://github.com/Mo379/TensorNets

- validate jax model transfer play game, check game
The next step is to check the validity of the model that utilises the transferred parameters by comparing the ouputs

of the PPO model with the haiku model, immediately two conditions of the test created for this task fail, firstly, the
output of the saved PPO model gives a value of none for one of the models (actor or critic, not sure which), and
secondly the outputs do not match. Ive discovered two possible reasons for this, firstly I was missing a preprocessing
step namely pixel normalisation such that pixelvalue ∈ [0.0, 1.0] this was easily added at the top of the code in FIG 2,
secondly, the log std (distribution) needs to be added at the correct place, the following figure (FIG 4) shows the first
issue solved and the second issue partially solved because I’m uncertain about where the log std is supposed to be
applied (Mislead by the jax.treemap(... x.shape...) function, as the scan is not ordered {facepalm} in addition to the
pytorch ordered dict for parameters operating in a backwards manner), and the exact mathematical implementation.

apply_fn

log_std

NatureCNN_l1

xla_call (relu)

NatureCNN_l2

xla_call (relu)

NatureCNN_l3

xla_call (relu)

flatten

NatureCNN_l4

policy_net

policy_net/~/linear_0

value_net

value_net/~/linear_0

convert_element_type
f32[]

div
f32[32,84,84,4]

mul
f32[32,84,84,4]

broadcast_in_dim
f32[1,1,1,1]

conv_general_dilated
f32[32,20,20,32]

args[0]: log_std/constant
f32[1]

add
f32[32,20,20,32]

broadcast_in_dim
f32[32,20,20,32]

max
f32[32,20,20,32]

args[0]: NatureCNN_l1/w
f32[8,8,4,32]

args[0]: NatureCNN_l1/b
f32[32]

convert_element_type
f32[]

conv_general_dilated
f32[32,9,9,64]

0

convert_element_type
f32[]

convert_element_type
f32[]

add
f32[32,9,9,64]

broadcast_in_dim
f32[32,9,9,64]

max
f32[32,9,9,64]

args[0]: NatureCNN_l2/w
f32[4,4,32,64]

args[0]: NatureCNN_l2/b
f32[64]

conv_general_dilated
f32[32,7,7,64]

add
f32[32,7,7,64]

broadcast_in_dim
f32[32,7,7,64]

max
f32[32,7,7,64]

args[0]: NatureCNN_l3/w
f32[3,3,64,64]

args[0]: NatureCNN_l3/b
f32[64]

reshape
f32[32,3136]

dot_general
f32[32,512]

add
f32[32,512]

broadcast_in_dim
f32[32,512]

dot_general
f32[32,1]

dot_general
f32[32,1]

args[0]: NatureCNN_l4/w
f32[3136,512]

args[0]: NatureCNN_l4/b
f32[512]

output[0]
add

f32[32,1]

broadcast_in_dim
f32[32,1]

args[0]: policy_net/~/linear_0/w
f32[512,1]

args[0]: policy_net/~/linear_0/b
f32[1]

output[1]
add

f32[32,1]

broadcast_in_dim
f32[32,1]

args[0]: value_net/~/linear_0/w
f32[512,1]

args[0]: value_net/~/linear_0/b
f32[1]

255

args[2]
f32[32,84,84,4]

FIG. 4: Haiku full actor critic model dot graph updated week2



5

- figureing out log std
The actions of the agent have to be translated into a discrete distribution instead of using the continus value

outputted by the policy network, therefore stablebaselines applied a distribution that disretises the output of the
policy network, hence the position where the log std layed is being applied in FIG 4 is incorrect, the following
figure (FIG ) shows the correct solution. The only thing now (Hopefully), is to figure out the implementation of the
distribution and then to test again to see if the model transfer is valid.

apply_fn

NatureCNN_l1

xla_call (relu)

NatureCNN_l2

xla_call (relu)

NatureCNN_l3

xla_call (relu)

flatten

NatureCNN_l4

policy_net

policy_net/~/linear_0

log_std

value_net

value_net/~/linear_0

convert_element_type
f32[]

div
f32[32,84,84,4]

conv_general_dilated
f32[32,20,20,32]

add
f32[32,20,20,32]

broadcast_in_dim
f32[32,20,20,32]

max
f32[32,20,20,32]

args[0]: NatureCNN_l1/w
f32[8,8,4,32]

args[0]: NatureCNN_l1/b
f32[32]

convert_element_type
f32[]

conv_general_dilated
f32[32,9,9,64]

0

convert_element_type
f32[]

convert_element_type
f32[]

add
f32[32,9,9,64]

broadcast_in_dim
f32[32,9,9,64]

max
f32[32,9,9,64]

args[0]: NatureCNN_l2/w
f32[4,4,32,64]

args[0]: NatureCNN_l2/b
f32[64]

conv_general_dilated
f32[32,7,7,64]

add
f32[32,7,7,64]

broadcast_in_dim
f32[32,7,7,64]

max
f32[32,7,7,64]

args[0]: NatureCNN_l3/w
f32[3,3,64,64]

args[0]: NatureCNN_l3/b
f32[64]

reshape
f32[32,3136]

dot_general
f32[32,512]

add
f32[32,512]

broadcast_in_dim
f32[32,512]

dot_general
f32[32,1]

dot_general
f32[32,1]

args[0]: NatureCNN_l4/w
f32[3136,512]

args[0]: NatureCNN_l4/b
f32[512]

add
f32[32,1]

broadcast_in_dim
f32[32,1]

output[0]
mul

f32[32,1]

args[0]: policy_net/~/linear_0/w
f32[512,1]

args[0]: policy_net/~/linear_0/b
f32[1]

broadcast_in_dim
f32[1,1]

args[0]: log_std/constant
f32[1]

output[1]
add

f32[32,1]

broadcast_in_dim
f32[32,1]

args[0]: value_net/~/linear_0/w
f32[512,1]

args[0]: value_net/~/linear_0/b
f32[1]

255

args[2]
f32[32,84,84,4]

FIG. 5: Haiku full actor critic model dot graph updated week2 2

- Unforseen Issue
The PPO model, when loaded twice on the same scrip and run on the same data ouputs different results, leading

to the concolusion that the PPO model infact uses a stochastic policy (Confirmed to be true, there is a deterministic
flag that can be set and this problem is resolved). Therefore i cannot expect an output that is consistent and i cannot
expect to be able to confirm that the model is successfully transferred without fully training it (If the transfer is
successful). Even though the

- run model on game without training
The task now is to deploy the haiku model on the environment and see it run, im expecting this to take some time

but to be easy at the same time.

- Train the PPO model params
- Find Jax RL algorithms
- Create a supervised learning methodology to train your own network



6

[1] J. Terry, Multi-agent deep reinforcement learning in 13 lines of code using pettingzoo, (2022).
[2] J. K. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sulivan, L. Santos, R. Perez, C. Horsch, C. Dieffendahl,

N. L. Williams, Y. Lokesh, R. Sullivan, and P. Ravi, Pettingzoo: Gym for multi-agent reinforcement learning, arXiv preprint
arXiv:2009.14471 (2020).

[3] J. K. Terry, B. Black, and A. Hari, Supersuit: Simple microwrappers for reinforcement learning environments (2020),
arXiv:2008.08932 [cs.LG].

[4] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plap-
pert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, Stable baselines, https://github.com/hill-a/stable-baselines
(2018).

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction (A Bradford Book, Cambridge, MA, USA, 2018).
[6] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,

S. Wanderman-Milne, and Q. Zhang, JAX: composable transformations of Python+NumPy programs (2018).
[7] K. K. S. D. e. a. Mnih, V., Human-level control through deep reinforcement learning, Nature 518, 529 (2015).

https://towardsdatascience.com/multi-agent-deep-reinforcement-learning-in-15-lines-of-code-using-pettingzoo-e0b963c0820b
https://arxiv.org/abs/2008.08932
https://github.com/hill-a/stable-baselines
http://github.com/google/jax


7

APPENDIX A

FIG. 6: Mathematics and probability

FIG. 7: Miscellaneous

FIG. 8: General



8

FIG. 9: Environment

FIG. 10: Agent

FIG. 11: Return; n-step, float and λ return

FIG. 12: Transition probability and expected reward

FIG. 13: State Value



9

FIG. 14: Array estimates and expected approximates

FIG. 15: Temporal difference

FIG. 16: The weight vector

FIG. 17: Visible feature vectors

FIG. 18: Parameter vector: policy loss action preference



10

FIG. 19: Behaviour policy importance sampling

FIG. 20: Miscellaneous 2

FIG. 21: Special matrices

FIG. 22: Bellman error


	Research Notes
	Abstract
	Week 0 & 1: Multi-agent RL baseline
	Week 2: validation, setup completion and RL method exploration
	References
	Appendix A


